Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition
نویسندگان
چکیده
Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new "paradigm shift" non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se₂ (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.
منابع مشابه
Effect of growth time on ZnO thin films prepared by low temperature chemical bath deposition on PS substrate
ZnO thin films were successfully synthesized on a porous silicon (PS) substrate by chemical bathdeposition method. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM),and photoluminescence (PL) analyses were carried out to investigate the effect of growth duration(3, 4, 5, and 6 h) on the optical and structural properties of the aligned ZnO nanorods. T...
متن کاملGrowth and Characterization of Thin MoS2 Films by Low- Temperature Chemical Bath Deposition Method
Transition metal dichalcogenide (TMDC) materials are very important inelectronic and optical integrated circuits and their growth is of great importance in thisfield. In this paper we present growth and fabrication of MoS2 (Molibdan DiSulfide)thin films by chemical bath method (CBD). The CBD method of growth makes itpossible to simply grow large area scale of the thin la...
متن کاملStudy of Photo-Conductivity in MoS2 Thin Films Grown in Low-Temperature Aqueous Solution Bath
An experimental study over the optical response of thin MoS2 films grownby chemical bath deposition (CBD) method is presented. As two important factors, theeffect of bath temperature and growth time are considered on the photocurrentgeneration in the grown samples. The results show that increasing the growth time leadsto better optical response and higher difference betw...
متن کاملPreparation of Nanocrystalline CdS Thin Films by a New Chemical Bath Deposition Route for Application in Solar Cells as Antireflection Coatings
Nanocrystalline cadmium sulfide thin films as antireflection materials for solar cells have been prepared by a new chemical solution deposition route in an aqueous medium at 50 °C. as-deposited thin films were studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and optical absorption spectra. X-ray diffraction data indicated the formation of hexagonal na...
متن کاملTwo-Stage Chemical Deposition of Oxide Films
Two-stage chemical deposition (TSCD) technique is used to produce ZnO, Mn2O3 and NiO films on soda-lime glass (SL-G) from an aqueous solution of zinc, manganese and nickel complex, respectively. The TSCD method enables the deposition of metal oxide thin films with a thickness which can be controlled during the preparation procedure. The ZnO, Mn2O3 and NiO thin films were polycrystalline films w...
متن کامل